2020 International Conference on Computer, Network, Communication and Information Systems (CNCI 2020)

Research and Implementation of LLVM JIT Porting for

Sunway Processor

Jiandong Shang', Hongsheng Wang'* and Mengyao Chen'*

ISchool of information Engineering, Zhengzhou University, Zhengzhou, China
a. shangjiandong@hotmail.com, b. whs1814@foxmail.com, c. cmy564088954@163.com

Keywords: ~ LLVM, JIT compilation, sunway processor, porting.

Abstract: Sunway processor is a general-purpose processor with independent
instruction set and complete independent intellectual property rights, and has been
successfully applied in various fields. As an open source compilation framework, LLVM
has been widely adopted by commercial and open source projects. It is of great practical
significance to implement the porting of LLVM to Sunway platform. Through the analysis
and research of the basic composition of the JIT (just-in-time) compilation system and the
functional principles of each component in LLVM, combined with the backend porting
mechanism of the open source compiler, the porting of the JIT compiler on the Sunway
multi-core processor platform is implemented. Relevant tests were completed based on the
LLVM test-suite, and the correctness of the transplanted LLVM JIT compiler was verified.

1. Introduction

The LLVM project was initiated by the University of Illinois to provide a modern compilation
research framework based on SSA (static single assignment), which can support static and dynamic
compilation of any programming language[1]. At present, LLVM has developed into an overall
project composed of multiple sub-projects, which is a collection of modular, reusable compilers and
tool chain technologies.

LLVM is now used as a general infrastructure to implement a wide variety of static and runtime
compiled languages[2]. Generally, a compiler implementation only provides traditional static
compilers (such as GCC, Free Pascal, and Free BASIC), or a runtime compiler in the form of an
interpreter or just-in-time (JIT) compiler. The LLVM compiler framework not only supports both
static compilation and runtime compilation, but the two share most of the code.

The LLVM JIT compiler is a function-based dynamic transformation engine[3]. The JIT
compiler does not store program binaries on disk, but compiles programs on demand at runtime
instead. An important feature of the JIT compilation strategy is that during the compilation of the
program, the JIT system can accurately understand the type of platform on which the program will
run and the underlying core architecture of the platform, which is conducive to compiling the
program code into a more efficient and suitable executable running on the platform. In addition, in

Published by CSP © 2020 the Authors 421

some cases, the compiler is used to compile part of the code only when the program is running, in
which case it is extremely necessary to implement and deploy a JIT compilation system. For
example, when a GPU program is running, any GPU intermediate code loaded by the program will
be further compiled into device-dependent binary executable code by the graphics card driver.

Due to the advantages of high modularity and strong optimization performance of the LLVM
compiler framework itself, more and more projects use LLVM as a compilation tool and are widely
used in academic research. By converting JavaScript language source code into LLVM IR
(intermediate representation) code and then optimizing it by heavyweight, Apple increased the
speed of the Safari JavaScript engine Nitro by 35%[4]. At the same time, the just-in-time
compilation technology in LLVM has also achieved quite important optimization results in many
practical engineering applications. Michael Larabel et al. Compile SQL queries through JIT in
PostgreSQL, avoiding passing SQL queries through the Postgres interpreter, so in database tests
such as TPC-H, the speed of compiling expressions for PostgreSQL is more than 20% faster, and
the speed of index creation It can even increase by 5-19%][5]. Yu-Hsin Tsai et al. modified the JNA
(Java Native Access) source code and integrated the LLVM JIT compiler into JNA to improve
performance. Their experiments achieved a performance improvement of approximately 8% to 16%
when calling native functions with different types and numbers of parameters[6]. Michal Gregor et
al. Used LLVM-based JIT compilation in genetic programming, focusing on executing evolutionary
programs as fast as possible, improving the computational efficiency of genetic programming, and
reducing the total execution time[7].

With the rapid development of domestic processors, it is very important to build basic software
such as the software ecosystem and compilation toolchain of domestic platforms, which is
conducive to the gradual improvement of the ease of use and robustness of domestic processors and
related supporting tools and software. In addition to developing software with independent
intellectual property rights, it is also of great significance to absorb and learn from excellent open
source software with wide application. The Sunway platform supports LLVM JIT compilation,
which is conducive to improving the software ecology of the Sunway platform, and is conducive to
the migration of many LLVM-based business projects and application software to the Sunway
platform, which promotes the IT system to be autonomous and controllable. The porting work of
this article is based on LLVM 3.3, and the backend target is Sunway multi-core processor.

2. LLVM Just-in-time Compilation

There are two types of JIT compilation frameworks (JIT and MCJIT) in LLVM 3.3. LLVM has
supported JIT since the release of version 1.0, and the MCJIT framework based on MC (Machine
Code) layer support has been introduced since version 2.9. In the version 3.3, the JIT framework
has been very mature, and the MCJIT framework has just been introduced. The relevant interfaces
and features are not mature and perfect, for example, there is no support for GOT. And, a lot of
software that uses the LLVM JIT system still uses the JIT framework. JIT and MCIJIT are two
completely different implementations. This paper will mainly discuss the mature JIT framework.

2.1.JIT Framework

The JIT framework is implemented by using various parts of the LLVM code generator. The entire
JIT framework is shown in Figure 1. It includes common target-independent function modules,
which mainly include JIT execution engine, JIT event listener, target-independent code emitter and
JIT memory manager, and target-related function modules, mainly target machines, Code generator
and target JIT support interface. Each functional module is implemented by related classes.

422

T . JIT
EventListener CodsEmitier MemoryManager

JIT
ExecutionEngine

JIT Support from

TargetMachine CodeGenerator
Target

Figure 1: JIT framework.

2.1.1. JIT Execution Engine

The JIT execution engine mainly depends on six other functional modules: JITMemoryManager
implements JIT memory management, JITCodeEmitter implements target-independent code
emission interfaces, TargetJ/ITInfo is a public interface supported by a specific target JIT,
TargetMachine represents the target machine, JITEventListener is an event listener, and JITState As
a code generator. The JIT engine works by compiling and executing LLVM IR functions at runtime.
During the compilation phase, the JIT engine uses the LLVM code generator to generate target-
specific binary instructions. Returns a pointer to a compiled function, and the function can be
executed. The JIT engine is almost independent of targets, but each target must implement binary
instruction emission for its specific instruction.

2.1.2. JIT Memory Management

In just-in-time compilation, memory management is essential for routine tasks such as memory
space allocation, release, library loading, and memory permission processing [3]. The JIT execution
engine uses the DefaultJ/ITMemoryManager class for memory management by default, which is
derived from the RTDyldMemoryManager base class. When this class is initialized, it will apply to
the operating system for 512kb of memory space for storing JIT-compiled binary instructions, and
another 512kb of space for function stubs. This class mainly implements the methods to complete
the following tasks: resolve the address of the available symbols in the current linked library, apply
for new memory space from the operating system when the requested free memory space is
insufficient, and allocate the available RWX Memory block for the compiled function binary code,
which allocates space for auxiliary structures such as function stubs, global variables, exception
tables, and GOT tables, and sets memory permissions on allocated memory blocks. Any JIT client
can also provide a custom RTDyldMemoryManager subclass to specify where different JIT
components should be placed in memory.

2.1.3. JIT Event Listener

JITEventListener is an abstract interface used by JIT to notify clients of important events during
compilation. For example, tell the profiler and debugger where the function was emitted and release
the memory occupied by the specified function. The default implementation of each method does
nothing and requires setting specific parameters when using LLVM to use JIT event listeners.

2.1.4. Target-independent Code Emission

The JIT execution engine uses JITCodeEmitter to issue binary instructions. The JITCodeEmitter
class is a target-independent code emission interface that is called by the target-related code

423

emission interface during the code emission process. This class mainly implements relatively
simple methods such as writing bytes to memory, for example, writing binary machine instructions
to a memory buffer, tracking the current buffer address, and so on. The more complex tasks are
implemented by JITEmitter, the subclass of JITCodeEmitter. JITEmitter implements various
complex auxiliary operations for code emission. JITEmitter mainly completes the following tasks:
allocate space for the current function to be emitted, release the memory space occupied by the
specified function, and issue auxiliary structures for the function (such as constant pool, jump table,
Relocation, etc.), and writing GOT tables. In addition, JITEmitter has a dedicated memory manager
JITMemoryManager relative to JITCodeEmitter, as well as a parser instance to keep track of and
resolve call points to functions that have not yet been compiled, which is essential for lazy function
compilation.

2.1.5. Target Machine Description

TargetMachine is a complete description interface of the target machine, through which all target-
specific information can be accessed. The target-unrelated part interacts with the target machine
through this interface, for example, to obtain the target processor's data layout, instruction
description, register description and other information, add target-specific compilation Pass in the
code generator, set target options, and so on. Therefore, all backend target machines need to inherit
the TargetMachine base class.

2.1.6. Code Generator

The code generator is mainly composed of a set of passes of compiled functions. All the passes are
executed by the run method of FunctionPassManagerlmpl. Each pass analyzes or converts one
function at a time, and converts LLVM IR into machine-dependent Machinelnstr step by step.
Finally, the machine-related object code emitter converts Machinelnstr into machine binary
instructions, and then uses the target-independent code emission interface to send the binary
instructions into memory.

2.1.7. JIT Support

The TargetJ)ITInfo class provides an interface for the JIT functions that each target needs to
implement. For example, application relocation, emission function stubs, lazy parsing, function
recompilation, etc. Each target needs to implement a TargetJITInfo subclass for JIT support.

2.2.Implementation Mechanism of JIT Compilation

The LLVM JIT compiler compiles one function at a time, which defines the granularity of
compilation, that is, LLVM uses function-based just-in-time compilation technology. The JIT
framework supports lazy-compilation. By compiling functions on demand, the JIT system will only
compile and execute functions that are actually used in the program. For example, if a program has
multiple functions but provides incorrect command line arguments when starting it, a function-
based JIT system will only compile functions that output help messages, not the entire program.
The process of JIT lazy compilation is shown in Figure 2.

424

Begin)

‘ Initialize Target ‘

v

‘ Create Module ‘

v

‘ Create JIT ExecutionEngine ‘

‘ Trigger JIT Compilation }4

[Compile function ‘

‘ Emit binary code of function‘

/—//// >
— i —
%\y function %

\\\[// N
Y
v
‘ Emit function stub (1) ‘

N AN

i N
y __The called function_
, cati “~has been compilex
‘ Apply Relocation ‘ \\\ /}/d/
‘ Modify function stub (2) ‘ Y T
‘ Execute function ‘ Call function stub (2) ‘
/// \\\\\
Function call —>————Y——
\///
N

v

‘ Exit form function ‘

End)
Figure 2: JIT lazy compilation implementation.

JIT lazy compilation, first initialize the target, the JIT engine will generate code for the
initialized target. Then create a module that contains the LLVM IR. The IR can be obtained by
parsing an existing LLVM assembly file or LLVM bitcode file, or it can be created directly in
memory by calling the LLVM function creation interface. Then use the engine builder to create the
JIT execution engine. When it is created, the engine builder will pass the previously created module
to the JIT execution engine, and the JIT constructor will instantiate the major functional modules.
Subsequently, through the JIT compilation of the function triggered by getPointerToFunction, the
code generator converts the function from the LLVM IR form to the Machinelnstr instruction, and
then the binary code generated by the target code emitter is transmitted to the memory to complete
the assembly process. If there is a function call in the function and the called function has not been
compiled, a stub that jumps to the lazy parsing function is emitted through the target's JIT support
interface. After the function is emitted, the relocation in the function is resolved through the target's
JIT support interface to complete the linking process. At this point, the function is ready to be
executed. Finally, the JIT execution engine executes the function via runFunction. If other functions
are called in this function, they will enter the corresponding function stub. If the function stub has
not been modified (that is, the called function is not compiled), it will enter the lazy parsing

425

function, compile the called function and modify the function stub with the called function address,
and then enter the called function for execution; if the function stub has been modified (The called
function has been compiled), JIT execution engine don't need to compile the called function again,
but jump directly to the called function through the stub. After the called function finishes executing,
it returns to the calling function and continues to execute the remaining instructions of the calling
function until the calling function exits, and the JIT execution engine executes the exit procedure.

The JIT framework also supports eager compilation. The difference between eager compilation
and lazy compilation is that when there is a function call, the called function is compiled directly
instead of emitting a function stub. Before executing the function, all the functions used in the
module have been compiled. And linking, make normal function calls when executing functions
without lazy parsing via function stubs.

3. JIT Porting on LLVM Backend

The basic SW64 backend porting has been completed before the JIT port, which can generate
complete assembly instructions for the SW64 backend. This paper does not repeat the basic
backend porting content here, but focuses on the JIT-related porting and implementation details.

In the LLVM architecture, a new backend (SW64) implements the JIT feature, which can reuse
existing public function modules, and only needs to add interfaces related to the new backend.
Figure 3 shows the overall hierarchical structure of the JIT framework. The part above the dotted
line is the target-independent function module and the porting interface provided to the backend,
and the part below the dotted line is the interface that the SW64 backend needs to implement. For
the SW64 backend, it is necessary to implement three main parts: a SW64 target machine that
supports JIT (SWo64TargetMachine), a SW64 code emitter in the code generator
(SW64CodeEmitter), and a JIT support interface (SW64JITInfo).

Event Listener JIT Execution Engine i
JITEventListener EPDyldhien
oryManager
JT [JITMemory
Manager
i Code
arget- Generator
JIT Support independent IITState De faLll\l/;HTMe
CodeEmitter - [MOALANa Ser
- - 1
AL g Pass Target
7y odeE mitter Machine _
TargetMachi
JITCodeE FunctionPass ne
mitter %
MachineFunc LLVMTarget
JITEmitter tionPass Machine
A
SW64CodeE SWo64Target
mitter Machine
SWo64Instrinfo

Figure 3: JIT porting hierarchy of LLVM backend.

3.1.Perfecting SW64 Target Machine

An LLVM backend with JIT support needs to achieve at least the target machine shown in Figure 4.
It mainly consists of data layout, instruction description (including register description), stack and
frame layout, instruction selection (including instruction matching and instruction legalization), and
target JIT Support, code transmission and other parts. These components not only describe the basic
properties of the target, but also perform target-related processing at various stages of code
generation.

Instruction Info Register Info
Target
’ Legalization of Match the
Instruction i

Figure 4: Structure of the target machine with JIT support.

’ Code Emission

In order to make SW64 backend support JIT, the SW64 target machine description was first
perfected. The SW64 target machine description is defined in the SW64TargetMachine interface.
SWo64TargetMachine provides an interface to get each component, and creates a target-related
configurator and configures a custom Pass in the code generator. This paper adds and improves JIT
support for the SW64 target machine, and adds a pass for target code emission to the SW64 code
generator, using the target code emitter to complete the assembly and linking of the code.

3.2.Implementing SW64 Code Emitter

JIT compilation does not generate assembly text. The code generator converts LLVM IR to
Machinelnstr, which is a very low-level intermediate representation. In the JIT framework, binary
code is generated directly through the object code emitter. This paper implements the code emitter
SW64CodeEmitter for the SW64 target. By creating the SW64CodeEmitter machine function pass,
it encodes the Machinelnstr instruction of the function and writes it to memory using the target-
independent code emission interface. Figure 5 shows the relationship between the SW64 code
emitter and the JIT framework.

TITEmitter DefaultJITMemory
Manager
\ 4 \ 4
JITCodeE mitter JITMemoryManager
\ 4 \ 4
SW64CodeEmitter — MachineCodeEmitter —] RTDy]dl;/lgz:‘lory Man

Figure 5: Relationship between SW64 code emitter and JIT framework.

First, create a SW64CodeEmitter interface that extends the MachineFunctionPass base class. The
runOnMachineFunction method is used as the top-level entry point of the SW64 code emitter. This
method needs to be rewritten to implement the assembly and linking process in the compilation
process. The designed algorithm is: This method first allocates memory for the function and
traverses all the basic blocks (MBB) in the function (F), then records the position of the basic block
and encodes each valid Machinelnstr (MI) in the basic block, that is, Complete the assembly

427

process; finally emit the auxiliary structure of the function and resolve the relocation in the function,
that is, complete the linking process. Among them, the tasks of allocating memory for functions,
recording the location of basic blocks, and emitting auxiliary structures are accomplished through
the JITCodeEmitter interface, and the relocation of analytical functions is accomplished through the
JIT support interface of SW64.

Secondly, implement the emitlnstruction method to complete the coding and emission of
Machinelnstr. This method first checks the validity of Machinelnstr, skips specific labels, and then
encodes only regular instructions. In order to reduce the workload of encoding instructions, the
llvm-tblgen tool automatically generates the getBinaryCodeForlnstr method according to the
instruction set description of the SW64 backend. This method generates binary machine code from
the input MI. To obtain the encoding of each operand, this method calls getMachineOpValue by
default, or calls the custom encoding method specified in the instruction description. Finally use
JITCodeEmitter to emit the encoding into memory.

To encode the operands, the getMachineOpValue method is implemented to get the value of
each operand. Operands have only three formats: symbol, immediate, and register. If the operand is
a symbolic operand (global address, symbol, constant pool index, jump table index, basic block),
use the JITCodeEmitter interface to add relocation information corresponding to the symbolic
operand, and getMachineOpValue returns 0. If the operand is in immediate format, the value of the
operand is returned directly. If the operand is in register format, the code of the corresponding
register is returned.

Finally, in order to complete the above functions, some auxiliary functions are also written to
complete tasks such as the identification of operand relocation types, the encoding of registers, and
the addition of relocation entries.

3.3.Implementing SW64 JIT Support Interface

In the JIT framework, each backend needs to implement a specific JIT support interface to have JIT
functions. To realize the JIT function, this paper has completed the JIT support interface of the
SW64 backend. SW64JITInfo is a subclass of TargetJITInfo. The JIT execution engine accesses the
SW64 backend JIT implementation through this interface. This paper completes key JIT functions
such as application relocation, emission function stubs, and lazy parsing for the SW64 JIT support
interface.

After the binary code of the function was emitted by the SW64 code emitter, the JIT engine
could not execute the code because the linking process had not been completed. To this end, a
method for applying relocations to a emitted function is implemented, using this method to iterate
through all relocations in a given function, fixing each symbol reference in the currently issued
function, especially relocations using the GOT table To point to the correct memory address. At
present, the analysis of 7 relocation types for SW64 targets has been implemented.

In JIT lazy compilation, since normal function calls are replaced with stub calls, the JIT support
interface is required to emit stub code that jumps to the called function to delay compilation of the
called function. This paper implements the method of emitting function stubs for the JIT support
interface of the SW64 target. This method first determines the target address of the function stub:
the address of the compiled called function or the address of the lazy parsing function. The SW64
target provides custom function stub layout information with a size of 24 bytes and 4-byte
alignment (including 6 instructions). JITCodeEmitter uses this stub information to allocate space for
it before issuing a new stub. Because when the JIT framework was established, there were no
dependable interfaces for tasks that issued independent instructions outside the basic block, so the
instructions of function stub need to be written manually: the target address is encoded into 6

428

instructions to achieve the jump to the target function turn. Finally, use the JITCodeEmitter object
to emit the function stub code into memory, and set this stub code to have executable permissions.

In JIT lazy compilation, the function stub emitted by the JIT support interface will jump to the
lazy parsing function when the called function is not compiled. This paper writes this function for
the SW64 JIT support interface. This function is written in assembly code and has complete control
over register save and restore. First write the assembly code to open a certain stack space and save
the value of the register (reservation register, parameter register, etc.) in the stack space, then write
the code that calls the callback compilation function with the address of the function stub as a
formal parameter, and then write the code to restore the register, and finally write the jump code to
make the function exit into the stub modified by the callback compilation function, and then execute
the called function.

This paper implements the compilation function for the SW64 JIT support interface. The
callback compilation function of the JIT support interface plays a vital role in JIT lazy compilation.
Finally, this method triggers JIT compilation of the called function. This method first resolves the
stub of the called function to the address of the called function through the stub parsing function of
the JIT engine. The called function has not been compiled. At this time, JIT compilation will be
triggered, and the compiled called function address will be obtained. Then use the address of the
called function to rewrite the function stub. The process of rewriting the function stub is similar to
the process of transmitting the function stub. When the called function is called again, the calling
function jumps directly to the called function through the function stub instead of calling the lazy
parsing function through the function stub.

In addition to the above functions, other JIT-related functions are implemented for the SW64 JIT
support interface, such as: obtaining a lazy parser function to initialize the parser instance of the JIT
code emitter, providing a lazy parser function for the SW64 target for the parser, and The SW64
target provides a stub parsing function to implement the interaction between the JIT execution
engine and the target in lazy compilation.

4. Experiment and Analysis
4.1.Test Method

LLVM provides an interpreter tool (lli) to use the JIT engine. 1li implements the LLVM bitcode
interpreter and JIT compiler by using the LLVM execution engine. This paper uses the LLVM
official test-suite to verify the correctness of the ported JIT compiler.

The Test-suite contains the complete source code of the programs, which are written in C or C++
and can be compiled and linked into an executable file. The JIT test is different from the usual static
compilation test. The process is shown in Figure 6. When testing, the Test-suite tested program is
compiled using the clang compiler and a set of flags to generate LLVM assembly code. Then use
the optimizer opt to optimize the intermediate code to generate optimized LLVM bitcode. 1li then
runs the bitcode with a set of options and dumps the output to a file. Finally, the output is compared
with the reference output to check the correctness of the program output.

429

| Compile xxx.c to xxx.Il by clang |

v

| Assemble xxx.I1 to xxx.bc by llvm-as |

v

| Copy xxx.bc to xxx.linked.rbc

v

Optimize xxx.linked.rbc to xxx.llvm.bc by opt,
Save the compilation information to xxx.Ilvm.bc.info

v

Run xxx.llvm.bc by 11,
Save the output to xxx.out-jit

v

Verify the correctness of the output

End

Figure 6: JIT test flow chart.

To eliminate the impact of LLVM itself, this paper set the Intel platform with X86 64
architecture as a control group for verification. Compile the unmodified LLVM3.3 source code on
the Intel platform and then test it; the source code of modified and support the Sunway processor to
compile and test on the Sunway platform.

After the porting, the correctness of the JIT compiler is verified on Sunway server. The CPU is
SW1621, a 64-bit processor with frequency of 1.60GHz, with deepin Linux operating system.

X86 64 architecture control group: The CPU is Intel (R) Xeon (R) CPU E5-2682 v4, with
frequency of 2.50GHz, the operating system is CentOS7.

4.2.Test Results
After testing, the overall results are shown in Table 1.

Table 1: Test result of test-suite.

Platform Test Pass Fail Pass Ratio
Sunway 483 471 12 97.52%
Intel 483 471 12 97.52%

4.3.Results Analysis

On the whole, the pass rate of test-suite on Sunway platform reached 97.52%, which is consistent
with the Intel platform, and has the same error cases and number, which is enough to prove the
correctness of the porting work and verify the reliability of the transplanted JIT compiler.

The test does not include cases that are only supported by the X86 64 architecture. Twelve cases
that failed the test, the first ten are cases related to exception handling. They reported errors during
runtime, and the two platforms were consistent. The output of the case scimark2 is consistent
between the two platforms. The problem with case tls is that the current porting version does not yet
support Thread Local Storage, and the X86 64 backend JIT does not support Thread Local Storage
ether.

430

5. Conclusions

This paper first briefly introduces the LLVM JIT framework, including its main components and
the functions of each part, and analyzes the implementation principle of JIT lazy compilation. Then
analyzed the backend porting mechanism of JIT and completed the SW64 backend porting.

The porting work of this paper makes LLVM JIT compile support Sunway processor, and passed
97.52% cases of test-suite, reaching the level of Intel platform, verifying the correctness of the
transplanted JIT compiler. At present, the SW64 backend has not yet implemented support for
Thread Local Storage and does not support case of recompilation. As the work continues, while
improving the above functions, the quality of the generated code can be further optimized and
improved to further improve the efficiency of JIT compilation.

References

[1] http://llvm.org/.

[2] Chris Lattner. The architecture of open source applications: LLVM [Online]. Available:
http://www.aosabook.org/en/llvm.html.

[3] Lopes, Bruno Cardoso. Getting Started with LLVM Core Libraries. Packt Publishing, 2014.

[4] Abel Avram. Apple Speeds Up WebKit’s JS Engine with LLVM JIT[Online]. Available:
https://www.infoq.com/news/2014/05/safari-webkit-javascript-llvm/, 2014-5-16.

[5] Michael Larabel. PostgreSQL Begins Landing LLVM JIT Support For Faster Performance [Online]. Available:
https://www.phoronix.com/scan.php?page=news_item&px=PostgreSQL-LLVM-JIT-Landing, 2018-3-22.

[6] Yu-Hsin Tsai, I-Wei Wu, I-Chun Liu, Jean Jyh-Jiun Shann. "Improving performance of JNA by using LLVM JIT
compiler.” Computer and Information Science (ICIS), 2013 IEEE/ACIS 12th International Conference on IEEE,
2013.

[7] Michal Gregor, Juraj Spalek. "Using LLVM-based JIT Compilation in Genetic Programming." Elektro. IEEE, 2016.

431

